Data-driven optimization of reliability using buffered failure probability

نویسندگان

چکیده

Design and operation of complex engineering systems rely on reliability optimization. Such optimization requires us to account for uncertainties expressed in terms complicated, high-dimensional probability distributions, which only samples or data might be available. However, using often degrades the computational efficiency, particularly as conventional failure is estimated indicator function whose gradient not defined at zero. To address this issue, by leveraging buffered probability, paper develops method (BORM) efficient, data-driven reliability. The proposed formulations, algorithms, strategies greatly improve efficiency thereby needs nonlinear problems. In addition, an analytical formula developed estimate sensitivity, a subject fraught with difficulty when probability. thoroughly investigated context many different leading novel measure tail-heaviness called tail index. accuracy methodology are demonstrated three numerical examples. Although they show slight deviations from target because sampling errors other inaccuracies, results underline unique advantages potentials analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational Study of the Buffered Failure Probability in Reliability-Based Design Optimization

The buffered failure probability is an alternative measure of reliability that offers several theoretical, practical, and computational advantages over the traditional failure probability. It is handled with relative ease in design optimization problems, accounts for the degree of violation of a performance threshold, and is more conservative than the failure probability. This paper examines th...

متن کامل

On buffered failure probability in design and optimization of structures

In reliability engineering focused on the design and optimization of structures, the typical measure of reliability is the probability of failure of the structure or its individual components relative to specific limit states. However, the failure probability has troublesome properties that raise several theoretical, practical, and computational issues. This paper explains the seriousness of th...

متن کامل

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

reliability-based optimization of space structures with gas under elements and nodes failure probability

due to the probabilistic nature and uncertainties of structural parameters, reliability-based optimization will enable engineers to account for the safety of the structures and allow for its decision making applicability. thus, reliability-based design will substitute deterministic rules of codes of practice. space structures are of those types that have an exceedingly high range of applicabili...

متن کامل

Direct data-driven portfolio optimization with guaranteed shortfall probability

This paper proposes a novel methodology for optimal allocation of a portfolio of risky financial assets. Most existing methods that aim at compromising between portfolio performance (e.g., expected return) and its risk (e.g., volatility or shortfall probability) need some statistical model of the asset returns. This means that: (i) one needs to make rather strong assumptions on the market for e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Structural Safety

سال: 2022

ISSN: ['0167-4730', '1879-3355']

DOI: https://doi.org/10.1016/j.strusafe.2022.102232